Dependency-based Siamese long short-term memory network for learning sentence representations
نویسندگان
چکیده
Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn the representation of words and phrases, fairly efficient models of learning short text representations have been developed, such as the continuous bag of words (CBOW) and skip-gram models, and they have been extensively employed in a variety of NLP tasks. Because of the complex structure generated by the longer text lengths, such as sentences, algorithms appropriate for learning short textual representations are not applicable for learning long textual representations. One method of learning long textual representations is the Long Short-Term Memory (LSTM) network, which is suitable for processing sequences. However, the standard LSTM does not adequately address the primary sentence structure (subject, predicate and object), which is an important factor for producing appropriate sentence representations. To resolve this issue, this paper proposes the dependency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained dependency parser to obtain the primary sentence information and generate supporting components, and it also uses a standard LSTM model to generate the basic sentence components. A weight factor that can adjust the ratio of the basic and supporting components in a sentence is introduced to generate the sentence representation. Compared with the representation learned by the standard LSTM, the sentence representation learned by the D-LSTM contains a greater amount of useful information. The experimental results show that the D-LSTM is superior to the standard LSTM for sentences involving compositional knowledge (SICK) data.
منابع مشابه
Emotions are Universal: Learning Sentiment Based Representations of Resource-Poor Languages using Siamese Networks
Machine learning approaches in sentiment analysis principally rely on the abundance of resources. To limit this dependence, we propose a novel method called Siamese Network Architecture for Sentiment Analysis (SNASA) to learn representations of resource-poor languages by jointly training them with resource-rich languages using a siamese network. SNASA model consists of twin Bi-directional Long ...
متن کاملContrastive Learning of Emoji-based Representations for Resource-Poor Languages
The introduction of emojis (or emoticons) in social media platforms has given the users an increased potential for expression. We propose a novel method called Classification of Emojis using Siamese Network Architecture (CESNA) to learn emoji-based representations of resource-poor languages by jointly training them with resource-rich languages using a siamese network. CESNA model consists of tw...
متن کاملSiamese Recurrent Architectures for Learning Sentence Similarity
We present a siamese adaptation of the Long Short-Term Memory (LSTM) network for labeled data comprised of pairs of variable-length sequences. Our model is applied to assess semantic similarity between sentences, where we exceed state of the art, outperforming carefully handcrafted features and recently proposed neural network systems of greater complexity. For these applications, we provide wo...
متن کاملEvaluating the Success of the Visual Learners in Vocabulary Learning through Word List versus Sentence Making Approaches
Thisstudy sought to evaluate the learners' achievements with the visual learning style when exposed to the sentence making and word list approaches. On that account, 45 basic level participants who studied at the Iran Language Institute (ILI), Bushehr, took part in this research study. At the outset, the learners were given Barsch learning style inventory (1991) to determine the learners' learn...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کامل